Domanda Selezione della colonna panda per posizione


Sto semplicemente provando ad accedere a colonne con nome di panda da un intero.

È possibile selezionare una riga per posizione utilizzando df.ix[3].

Ma come selezionare una colonna per intero?

Il mio dataframe:

df=pandas.DataFrame({'a':np.random.rand(5), 'b':np.random.rand(5)})

44
2018-02-18 16:41


origine


risposte:


Due approcci che vengono in mente:

>>> df
          A         B         C         D
0  0.424634  1.716633  0.282734  2.086944
1 -1.325816  2.056277  2.583704 -0.776403
2  1.457809 -0.407279 -1.560583 -1.316246
3 -0.757134 -1.321025  1.325853 -2.513373
4  1.366180 -1.265185 -2.184617  0.881514
>>> df.ix[:, 2]
0    0.282734
1    2.583704
2   -1.560583
3    1.325853
4   -2.184617
Name: C
>>> df[df.columns[2]]
0    0.282734
1    2.583704
2   -1.560583
3    1.325853
4   -2.184617
Name: C

71
2018-02-18 16:44



Puoi anche usare df.icol(n) per accedere a una colonna per intero.

Aggiornare: icol è deprecato e la stessa funzionalità può essere ottenuta da:

df.iloc[:, n]  # to access the column at the nth position

30
2018-04-11 12:01



Potresti usare etichetta basata su .loc o indice basato sul metodo .iloc per eseguire l'affettamento di colonne, compresi gli intervalli di colonne:

In [50]: import pandas as pd

In [51]: import numpy as np

In [52]: df = pd.DataFrame(np.random.rand(4,4), columns = list('abcd'))

In [53]: df
Out[53]: 
          a         b         c         d
0  0.806811  0.187630  0.978159  0.317261
1  0.738792  0.862661  0.580592  0.010177
2  0.224633  0.342579  0.214512  0.375147
3  0.875262  0.151867  0.071244  0.893735

In [54]: df.loc[:, ["a", "b", "d"]] ### Selective columns based slicing
Out[54]: 
          a         b         d
0  0.806811  0.187630  0.317261
1  0.738792  0.862661  0.010177
2  0.224633  0.342579  0.375147
3  0.875262  0.151867  0.893735

In [55]: df.loc[:, "a":"c"] ### Selective label based column ranges slicing
Out[55]: 
          a         b         c
0  0.806811  0.187630  0.978159
1  0.738792  0.862661  0.580592
2  0.224633  0.342579  0.214512
3  0.875262  0.151867  0.071244

In [56]: df.iloc[:, 0:3] ### Selective index based column ranges slicing
Out[56]: 
          a         b         c
0  0.806811  0.187630  0.978159
1  0.738792  0.862661  0.580592
2  0.224633  0.342579  0.214512
3  0.875262  0.151867  0.071244

4
2018-06-19 22:09



Puoi accedere a più colonne passando un elenco di indici di colonne a dataFrame.ix.

Per esempio:

>>> df = pandas.DataFrame({'a':np.random.rand(5), 'b':np.random.rand(5), 'c':np.random.rand(5), 'd':np.random.rand(5)})

>>> df
          a         b         c         d
0  0.705718  0.414073  0.007040  0.889579
1  0.198005  0.520747  0.827818  0.366271
2  0.974552  0.667484  0.056246  0.524306
3  0.512126  0.775926  0.837896  0.955200
4  0.793203  0.686405  0.401596  0.544421

>>> df.ix[:,[1,3]]
          b         d
0  0.414073  0.889579
1  0.520747  0.366271
2  0.667484  0.524306
3  0.775926  0.955200
4  0.686405  0.544421

2
2017-08-16 04:09



Il metodo .transpose () converte le colonne in righe e righe in colonne, quindi potresti persino scrivere

df.transpose().ix[3]

0
2018-05-11 15:12